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Requirements for Muon Acceleration

● Extremely large emittances: 30,000 mm mrad normalized (full)

● Extremely rapid acceleration
◆ Avoid excessive decays
◆ Real-estate gradients 1 MV/m and above

● Motivation for use: cost
◆ To be compared with recirculating linear accelerator (like

CEBAF)
◆ Save money by making more passes through RF
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Types of FFAG Solutions Proposed

● Scaling FFAGs (NuFactJ report)

● Linear Non-Scaling FFAGs

● Isochronous FFAGs
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Factors That Drive FFAG Choice

● Cost

● Keeping decays low (this is really cost): high average gradient

● Sufficient Dynamic Aperture

● Keeping RF synchronized
◆ Time of flight depends on energy
◆ Acceleration too rapid to change RF frequency
◆ Must accelerate more quickly: fewer turns, more RF, more cost
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Scaling FFAGs

● Traditional form of FFAG
● Tune indenendent of energy

◆ Find a good working point away from resonances
◆ Time of flight independent of transverse amplitude (more later)

● NuFactJ scheme as it exists seems expensive
◆ Optimization has been demonstrated to give significant

improvements
◆ New ideas on the table (normal conducting spiral sector FFAG

even at high energy, for instance)
◆ Need to get optimized, trackable scheme defined

● NuFactJ scheme used low-frequency RF
◆ System less efficient at capture/transmission of muons (Palmer)

★ Again, may need optimization
◆ Difficulty in obtaining high gradients
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Scaling FFAGs
High Frequency RF

● Time of flight gives minimum field index: k = 1220for 201.25 MHz,
10–20 GeV scaling FFAG, 1.5 MV/m average gradient
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◆ This is not so much larger than existing designs
● This requires many cells (about 180):
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◆ Gradient must be maintained over cells, so very few turns (2.3
GV RF for 10–20 GeV)

● Basically forced to low frequency
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Fixed-Frequency Acceleration in Scaling FFAG
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Isochronous FFAGs

● Make time of flight independent of energy
◆ Time of flight does not give a minimum amount of RF

● Highly nonlinear fields required

● Tunes depend on energy

● Result: poor dynamic aperture (for muons): < 1000 mm mrad
normalized
◆ Even have significant losses with these beam sizes

● Plans to address this by correcting chromaticity using two cell
types
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5-Cell Lattice

O     bd(-)     o     F(±)     o         BD(+)         o     F(±)     o     bd(-)     O 

2.4    0.45    0.5    0.62    0.5        1.26        0.5    0.62    0.5    0.45    2.4 m
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Field Fits for Isochronous FFAG
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Isochronous FFAGs
Particle Transmission
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Linear Non-Scaling FFAGs

● Allow the tune to vary. Doesn’t hurt dynamic aperture because:
◆ Use linear magnets; resonances not driven strongly
◆ Keep every cell the same: only single-cell behavior matters
◆ Accelerate rapidly through any (weak) resonance

● Have relatively (for FFAGs) small apertures: lower cost

● Keep time of flight range small by making isochronous within
energy range
◆ Time of flight is parabolic function of energy
◆ Allows the use of high frequency RF
◆ Unique “gutter acceleration” mode
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Time of Flight
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Tracking in Linear Non-Scaling FFAGs
Longitudinal Phase Space Channel
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Linear Non-Scaling FFAGs
Time of Flight Dependence on Transverse Amplitude

● Problem with time of flight depending on transverse amplitude

T = T0(E) − 2πmc
dν

dE
Jn

● High amplitude particles take longer than low amplitude

● Need to insure that RF is synchronized for both low and high
amplitude
◆ Limits range of allowed RF frequencies (b)
◆ Must increase voltage (a) to be able to accelerate all amplitudes

to full energy

● Passing to next stage a problem: larger time spread, high
ampliutde start late
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Time of Flight vs. Amplitude

10 12 14 16 18 20
Total Energy (GeV)

0

5

10

15
T

im
e 

of
 F

lig
ht

 (
ps

)

2JNx = 0 mm; 2JNy = 0 mm

2JNx = 30 mm; 2JNy = 0 mm

2JNx = 0 mm; 2JNy = 30 mm

2JNx = 30 mm; 2JNy = 30 mm

Zero time for minimum b
Zero time for maximum b

16



Longitudinal Phase Space
Baseline
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Longitudinal Phase Space
Increased b
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Longitudinal Phase Space
Increased Voltage
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Linear non-scaling FFAGs
Addressing Problems

● Reducing time of flight range alone will not improve this effect
◆ Phase space improves for low amplitude
◆ High amplitude gets worse: more cells per turn

● Introduce small nonlinearities to correct chromaticity
◆ Initial attempts don’t do so well

● Time slip simply proportional to number of cells we go through
◆ Fill maximum number of cells with RF
◆ Make fewer turns: more voltage

● Introduce higher harmonic RF
◆ Reduces energy spread correlated to different times of flight
◆ Increases time of flight range that is accelerated

● Only promise ellipsiodal distribution transmitted: large longitudinal
amplitude, low transverse amplitude

20



Longitudinal Phase Space
Square Wave RF
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Concluding Observations

● Isochronous FFAGs, like all highly nonlinear non-scaling FFAGs
studied so far, seem to have transverse dynamic aperture
problems for large muon emittances

● Scaling FFAGs currently showing poorer performance and higher
cost than other solutions
◆ A significant optimization effort may help this
◆ Cannot overcome being forced to use lower RF frequencies

● Linear non-scaling FFAGs must address the dependence of time
of flight on transverse amplitude
◆ We have several methods to attack the problem, and we will

probably need to employ them all
◆ Costs will be higher than originally envisioned
◆ May lead us to avoid using FFAGs at lower energies where they

are less efficient
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